Boundedness of solutions for sublinear reversible systems

نویسنده

  • Xiaojing Yang
چکیده

In this paper we will study the boundedness of all solutions for second-order differential equations ẍ+ f(x)ẋ+ λx+ g(x) = p(t), where λ ∈ R and g(x) satisfies the sublinear growth condition. Since the system in general is non-Hamiltonian, we have to introduce reversibility assumptions to apply the twist theorem for reversible mappings. Under some suitable conditions we then obtain the existence of invariant tori and thus the boundedness of all solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization

This paper presents a new method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the scalar optimization problem constructed by using these functions, enables to compute complete set of weakly efficient, efficient, and properly efficient solutions of multi-objective optim...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms

This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...

متن کامل

Adams-spanne Type Estimates for Certain Sublinear Operators and Their Commutators Generated by Fractional Integrals in Generalized Morrey Spaces on Heisenberg Groups and Some Applications

In this paper we consider the Spanne type boundedness of sublinear operators and prove the Adams type boundedness theorems for these operators and also give BMO (bounded mean oscillation space) estimates for their commutators in generalized Morrey spaces on Heisenberg groups. The boundedness conditions are formulated in terms of Zygmund type integral inequalities. Based on the properties of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 158  شماره 

صفحات  -

تاریخ انتشار 2004